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1 Introduction
1.1 The Problem Being Solved
Various fields of human physical activity test the subject’s speed, endurance, accuracy, and reaction time. All sports require the use of speed and agility drills for their tryouts and daily training. Physical therapists and practitioners recuperate their patients by guiding them through various mobility drills to regain their movement capabilities. Military and law enforcement go through rigorous physical training that targets their endurance and reaction time to prepare them for the taxing jobs ahead of them. Children and teenagers in school are regularly tested on speed and endurance through antiquated forms of physical activity. Despite this large emphasis placed on these factors in the world of physical health, there is no standard for how to collect the data through certain movements or to analyze that data. This wide range of physical activity heavily depends on human direction, timing, setup, and analysis, which inherently leads to human error. Furthermore, the lack of standardization in tracking results and analyzing data creates difficulties in seeing improvement or progression over a period of time. Likewise, the current training drills are not automatically catered towards the individual’s strengths, weaknesses, or general capabilities, and do not constantly progress over time with developments made by the user. Human analysis attempts to predict and aid in improvement, but this is inefficient and prone to human error, which costs the subjects and testers time and energy. 
In all of these applications, the practitioner and user need to clearly see what progress is being made based on updated, real-time data to help the client build on his skillset. However, one cannot easily do so from the lack of technology that interfaces between user performance and data analysis. This lack of modernization in these spheres hinders the user’s ability to pinpoint areas of weakness and direct attention to areas to grow; technologically integrating these activities would prove beneficial to help further the human capacity for physical activity. 

1.2 High Level Description of Our Solution
To ameliorate this problem, we created Athletic Trainer Pads that serve as a standard to test speed and reflex. The pads themself direct a speed-based agility drill that connects to a website interface that analyzes and stores the user’s data metrics over time. The user performs various drills that require him to hit the pads in a certain order based on the specific drill; the website collects the total time the activity took and displays it for the user. This allows us to move beyond traditional methods of measuring speed and improving agility. The goal is to improve the quality of standard agility drills for users while increasing the efficiency of analysis for testers. 
We have achieved this goal with the final working design of Athletic Trainer Pads. Overall, it met our broad goal of registering the user’s touch, starting a drill, and measuring the total time elapsed throughout a workout drill. Athletic Trainer Pads allows for more accurate timing of speed and agility drills in comparison to a human manually timing via a stopwatch. The time data produced by our design has proven to be accurate via numerous tests of the system. Further, our design provides the user with real-time, accurate data about their completed workout drill and allows the user to compare this data with past workout time data. However, in reflecting upon our final design of Athletic Trainer Pads and our aspirations from the start of this project, our finishing product is only relatively up to par with our initial visions. In envisioning this speed-based agility drill, we wanted to provide a simpler and smarter method for athletes to have access to more data for training improvement in an easy and efficient manner. While achieving this in a sufficient manner, we think that there is more that Athletic Trainer Pads will have to offer, particularly in the software and data analysis departments. 
The unreliability of the communication protocol, ESP-NOW, employed in its design hinders our ability to make the drill as consistent as it ideally should be. The finicky nature of ESP-NOW has proven to work throughout the duration of a workout drill without flaws. However, it does encounter failure more often than we would like, causing more frequent resetting than initially expected. Additionally, the nature of the Wi-Fi router used in the creation of this design and the burden of multiple design groups utilizing it necessitated the need to implement a longer delay between each button system lighting up. Thus, this required the entire workout drill to include time beyond the user’s reaction time, going against our initial expectations. 
The development of our data analysis software was a success with some limitations. Our final design met necessary expectations with the ability to provide the user with accurate, instantaneous time data after the completion of each workout drill, the amount of data and the manner in which the data is displayed was adapted to fit time constraints. We previously established plans for the website interface to provide graphical representations and a full report breaking down the user’s time data. It was initially intended for the user to easily compare current drill times with past drill times and identify their progression path all on the website interface. However, our final design had to be limited so that the display of the individual drill elapsed time on the website interface and the display of all time data can be viewed via a separate link to the AWS bucket. 
Further, our completed design has deviated from our ideas regarding how much data can be collected by the entire system. Initial visions sought to employ varied types of drills so the user had the option to receive additional relevant information regarding their training. This could provide insight into whether a certain side, movement, or another element of their training proved to be weaker. Not only was this data going to be provided through the analysis report, but the user was going to have the opportunity to select an adaptive training mode to improve upon identified weak areas. Such a development was going to be accomplished utilizing machine learning implemented within Athletic Trainer Pads’ software. 

2 Detailed System Requirements 
The following lists the system requirements necessary for creating Athletic Trainer Pads so that it addresses the need for standardized, efficient agility drills capable of tracking and providing real-time data and analysis. 

a. Four slave button systems that provide visual cues to indicate when and where to strike 
b. Two master board systems to interface with the website and the slave buttons 
c. Visual cues are in the form of an addressable lit up LED 
d. Slave button systems should detect a user push via an analog hall sensor within the button 
e. Change in magnet location relative to the sensor controls the LED turning on and off 
f. Button systems must withstand a considerable force (user push) applied 
g. Button systems are wireless and rechargeable via a USB-c port with connections to a Lithium-ion battery pack 
h. Button slave systems communicate with the master button via ESP-Now 
i. Website communicates with the master button via Wifi
j. Website capable of time data storage from completed workout drills
k. Website displays elapsed time after each workout drill
l. Mechanical casing is large enough to contain all components but light enough to be mountable on various surfaces
m. Mechanical casing has a cutout for a USB-c cord to reach the USB-c port in order to charge the battery pack
n. Mechanical casing has a hole for user to reach the reset button if troubleshooting 
o. Button systems contain adhesive that is capable of sticking to a variety of surfaces 
p. Springs within buttons must be flexible to ensure the user can quickly push the button without facing resistance. Spring rate should allow for a variety of forces to be applied and registered by the system. 
q. Battery pack must be connected to allow for recharging via USB-C connection
r. User should be able to recharge the button systems without dismantling them
s. Battery pack must be able to provide power for several hours before recharging
t. LED must be bright enough to be seen through clear button casing 
u. Button casing material must be clear enough for LED to shine through for the user to see
v. LED must stay lit until a user touch is correctly detected
w. Overall structure should be able to be dismantled easily in case of troubleshooting
x. System design must be within a reasonable total cost to ensure reasonable consumer prices
y. Website must be user-friendly 
z. Website must communicate the initiation of a workout to the button systems
aa. The button systems should light up a total of ten times in the communicated sequence for each workout drill
ab. The button systems must be capable of communicating with each other for a distance of 2 meters
ac. Website should clearly indicate where the user should click to start a drill
ad. Mechanical casing must protect electronic components and prevent safety concerns surrounding electronics
ae. Mechanical casing must be securely fastened so it remains in one piece when mounted and transported
af. Magnet must be strong enough that even light touches are detected by the hall sensor
ag. System must be capable of simultaneous two-way communication: from the website to the button systems and vice versa
ah. Master board button system found in unique mechanical casing design to allow it to be easily distinguishable from the slave button systems
ai. IP address needed to launch the website located on the bottom of the master board button casing
aj. The user should be able to load the website from most electronic devices, including various brands of phones, computers, tablets
ak. User must be able complete numerous workout drills without reloading the website page
al. IP address remains the consistent for user’s use of the collection of button subsystems provided with each set of Athletic Trainer Pads 
am. Provided link to the AWS bucket for the user to visualize each of their past workout times

	This complete list of system requirements lays out all of the necessary conditions to fulfill our goal of creating a more efficient, user-oriented, and standardized agility drill that can be applied for a variety of use cases. In order to be a complete solution to this problem, the design of Athletic Trainer Pads must ensure safety of the user as well. User safety is addressed by requirements ensuring the electronic components are contained and protected in a durable mechanical casing. A user-friendly design is achieved by outlined requirements that promote the creation of an agility drill that is satisfying for the user to partake in. The push mechanism design, involving the clear dome casing and springs, adheres to conditions that allow for the user to strike the button system with as little or as much force as they choose. Thus, this produces a gratifying movement for the user. Furthermore, the LED light system, indicating what button to strike and when, is devised to be very visible, simple for users to understand, and help gamify the agility drill. The user-oriented nature of this design is further promoted via an easy to understand and use website. By minimizing the start of a drill to a click of a singular button on the website and ensuring time collection is automatically displayed on the website, it requires minimal steps for the user in terms of initiation and completion of each workout drill. 
Furthermore, the aforementioned requirements ensure that our design addresses the lack of standardization and efficiency in most agility drills. It allows for a standardized and accurate collection of time data throughout agility drills by eliminating the possibility of human error. This is achieved via the designed two-way communication between the button systems and the website. Both the website link and the AWS bucket link are developed in a manner that enables users to track their results over a period of time. This time data is displayed on the website and AWS bucket efficiently by negating the need for the user to record and track their own times. Combined, these conditions create a method of collecting and displaying data in a manner absent of inefficiencies and inconsistencies.
Moreover, these set of requirements enable Athletic Trainer Pads to be applicable to a variety of use cases. By ensuring a reasonable total cost, a wireless system, mounting capabilities, and ability to apply a varying amount of force, the Athletic trainer pads are flexible for numerous sports, agility, and physical applications. Overall, these system requirements guarantee that Athletic Trainer Pads provide a unique solution to the absence of user-friendly technology that interfaces between user performance and data analysis in applications involving speed, agility, and reflexes. 

3 Detailed Project Description
The overall hardware system of our proposed solution consists of six total button systems. Two of the five button systems are established as the master system and the other four as the slave systems. Each button system has a protective mechanical casing providing a user-friendly striking surface and protecting the components from damage. This mechanical casing was designed using the CAD software SolidWorks and then produced using 3D printing. Materials utilized included clear resin for the dome casing and ABS-M30, a production-grade thermoplastic material, both of which offer high impact durability and water-resistance. The outer mechanical structure consists of three separate pieces: a base component, a clear dome casing that enables the user to visualize the LED, and an outer casing that allows for the fastening of the three pieces together. The three pieces are held together via poles and screws that connect through them. 
The base piece houses the ESP32-C3 board, lithium-ion battery pack, addressable Adafruit LED, and analog Hall Effect sensor. The sensor and LED are externally mounted atop of the ESP32-C3. The only difference in hardware between the master button system and the slave button systems is its lack of an addressable LED and Hall Effect sensor. Each button system is wireless. Pre-programmed and battery powered, the buttons can all run the drill without any external connection. 
The 3.7V Lithium-ion battery is responsible for powering the ESP32-C3 board, clock, the LED, and Hall Effect sensor. It is rechargeable via a USB-c port accessible through an opening in the base of the mechanical casing. The addressable LED enables each slave button system to light up and indicate to the user when and which button to push as the workout progresses. The push mechanism is enabled through the use of springs and a magnet attached to a protrusion incorporated in the design of the dome casing. As the user pushes down on the dome casing, the distance between the magnet and Hall Effect sensor decreases; when that  change is detected, the sensor recognizes the touch and communicates it to the ESP32-C3 board. The springs cause the dome casing and its associated magnet apparatus to return to its original position so that no further touch is detected after the initial push. Each button system can be mounted on a wall or another surface using durable velcro. 
[image: ][image: ]Figure 1: 3.7V Lithium Ion Battery and ADAFruit LED
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Figure 2: Physical Circuit with attached Battery and LED
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Figure 3: Button System Internals, showing Circuit Board and Mechanical Casing

Figure 4: Dome with Magnetic Protrusion [image: ]
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Figure 5: Fully Constructed Button System

	The overall software system of our proposed solution consists of communication between the boards via ESP-NOW, a website that the master board connects to via WiFi, and an AWS bucket to store time data. ESP-Now operates within the 2.4 GHz band from the built in antennas on ESP32. The button systems were placed on a table and were separated by a few inches, but ESP-Now supports greater distance for communication between the boards. Throughout the drill, after the user hits the lit up button, the system will register that touch and use ESP-NOW to communicate to the next button system to light up. 
	The drill is started and terminated in a master board that is not utilized as a striking button system. The master board uses its mac address to create a web server. From there, the user can either initiate a drill or do data analysis. If the user chooses to initiate a drill, a start signal will be sent to the slave boards/buttons which will randomly determine which button to light up next. 
	The time data for each drill is stored in an AWS bucket. Buckets are AWS cloud based storage that can be accessed via WiFi. Each time the drill is run, the drill will terminate after the 10 lit up touchpads have been hit. The total amount of time the drill takes to complete will be from the time the first touch pad lights up until when the last one is striked. The master board will then use WiFi to communicate with the AWS bucket and put the total amount of time the user took into the bucket along with previous times.
3.1 System Block diagram[image: ]



Figure 6: Overall System Block Diagram
3.2 Subsystem 1: Mechanical Casing 
Subsystem 1, while being the most simple functionally, is arguably the most vital as it serves to protect the electronic hardware and provide a mechanical means of registering a response through user touch. The mechanical casing was modeled in SOLIDWORKS and 3D printed utilizing clear resin for the dome casing and ABS-M30, a production-grade thermoplastic material. We chose to design the hardware system in this manner as it enabled us to customize the design of the button to each specification and employ durable material to withstand the anticipated applied force throughout numerous workouts and various weather conditions. The mechanical casing was designed to be large enough in size to contain all the hardware including the hall sensors/magnets, LED, battery power system, and ESP32-C3, but not too large that it poses a risk of being cumbersome or unmountable to a wall. 
This hardware system consists of a dome that makes up the top of the button that is spring loaded to the base. The springs chosen for each button system are 3/8" x 1-1/4" zinc compression springs. These springs were chosen for their spring rate and durability, allowing for the correct travel requirements while withstanding the applied force. Attached to the clear dome casing is a prod-like apparatus that grips the magnet. Thus, upon applied user force, the springs compress and the magnet travels closer to the base piece where the Hall Effect sensor is mounted onto the ESP32-C3 board. The magnet was chosen based on strength considerations. The magnet needed to be strong enough for the sensor to register when it is in proximity but not too strong that it interferes with the components. Along with the ESP32-C3 board with its mounted Hall Effect sensor, the base component also contains a 3.3V lithium ion and Adafruit LED wired to the board. The LED is mountable on a shelf incorporated in the base component design, ensuring its protection from any force applied to the dome casing and its visibility, even at a distance, for the user throughout the workout. The clear dome casing and base component are enclosed by an outer casing ensuring the contents protection. There is a USB-c port that is accessible from the exterior of the button that allows each button system to be easily rechargeable by the user. The last notable element of the mechanical subsystem is its ability to be mounted to a surface. The method employed to mount the button subsystems to a surface is heavy duty Velcro attached to the bottom of the button subsystem.  
This subsystem was tested by assembling the entire system, pressing down on the clear dome casing, and running programmed test code to determine if a user touch was registered when the magnet approached the Hall Effect sensor. This helped determine whether the design of the mechanical casing and its associated components were sufficient in allowing the push mechanism to occur. This proved that, in striking the mechanical subsystem as one would throughout the duration of a workout drill, the button compressed and moved the magnet to the necessary distance to the sensor for a touch to be registered. The durability of the mechanical casing was tested by repeatedly applying considerable force to the design while mimicking the push motion. This ensured that the mechanical casing, itself, could withstand the jockeying it would undergo throughout a workout drill and that the components would remain protected. Finally, the last test of the mechanical casing subsystem involved its ability to remain mounted on a surface throughout repeated blows sustained throughout a workout drill. To test this element of its design, we first attached the entire button subsystem to a wall and ensured that it would remain mounted for several hours. Then, we repeatedly struck the button subsystem, mimicking the motions of a workout drill. Both tests proved that the mechanical casing was sufficient in its design to meet this system requirement.
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Figure 7: Mechanical Casing CAD Files 
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Figure 8: Subsystem 1: Mechanical Casing Block Diagram

3.3 Subsystem 2: Power 
Per the system requirements, each button must operate independently from an outlet and therefore a battery was used to power each system. For this project, a 3.7 V 400mAH Lithium-ion battery was used because of its fast charge time, long battery life, and light-weight, small design. When operating with the clocks enabled, the ESP32-C3 has a current of ~25 mA. Since the ESP32 is the main aspect in the power scheme, the total battery life accounts for the microcontroller; the total battery life would be ~16 hours. This small battery pack fits within the button casing and externally connects to the board. 
3.1.1 Battery Management 
Figure 9 shows the circuit schematic for the battery management system. The positive and negative leads of the battery are connected to the MCP73831T-2-OT, a charger IC ion/polymer in parallel to a 4.7 uf capacitor. The  MCP73831T-2-OT is also connected to VUSB which comes from the USB-c interface. VUSB is 5 V and when plugged into the USB-c cable, flows through the MCP73831T-2-OT and into the battery, charging it. The voltage that comes out of the charged battery is “VBAT” and is 3.7 V. VBAT is routed to the voltage regulator, BU33SD5WG-TR where the voltage is stepped down from 3.7 V (supplied by VBAT) to 3.3 V, which is the VDD that is routed to power the rest of the circuit. BU33SD5WG-TR is a linear low dropout voltage regulator integrated circuit that was chosen because it has a drop out voltage of 550 mV (5.5 V), which is small enough for our system which requires the system to drop from 3.7 V to 3.3 V. The maximum input voltage for the BU33SD5WG-TR is 6 V and it has a fixed output voltage of 3.3 V, which meets our system requirements. Originally, the STBY was attached to VUSB, meaning that the regulator was “on '' when it was receiving power from the USBC. However, this proved to be an error in the schematic because the regulator was not “on'' when only the battery was plugged in. To remedy this error, we cut the trace connected STBY to VUSB and connected the now visible trace to VBAT instead. This way, the regulator is “on '' whenever VBAT has 3.7 V. VDD is connected to the output of the regulator, which is a fixed voltage of 3.3 V and routed to the rest of the circuit. 

[image: ]
Figure 9: Battery Management Schematic 
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Figure 10: Voltage Regulator Schematic 

3.1.2 Power to Rest of Circuit 
	From the voltage regulator, VDD is connected to the ESP32-C3, the hall sensor, and the LED. The ESP32-C3 requires 3.3 V to VDD to operate. The hall sensor also requires 3.3 V to operate, as does the Adafruit LED. 

[image: ]
Figure 11: Subsystem 2: Power Block Diagram
3.4 Subsystem 3: Sensors 
Subsystem 3 consists of the sensing system within the striking system. The system must be able to register user touch and communicate that touch with the ESP32 board; the user’s touch is registered using an analog hall sensor. The hall sensor will register the change in magnetic field due to the magnet’s movement. The hall sensor will be connected to the ESP32 board in the middle of the casing and when a change in magnetic field is detected, the hall sensor will send a signal to the ESP32 board, which will interface with the other subsystems. Generally, a hall sensor was selected for this design because it is a non-contact means of detecting change in location with no other moving parts. Non-contact is beneficial in this system where constant pressure is being applied, which could have put the sensing system in danger. 
The hall sensor chosen is the DRV5057Z2 linear hall effect sensor with PWM output, which operates within the 3.0-3.6V range. This hall sensor was chosen to meet the specific power requirements and for its sensitivity (0.6%D/mT at 3.3V) Analog was chosen over digital to have a consistent, continuous output for better precision. A digital hall sensor was originally tested, but was not consistently providing the correct results. This hall sensor produces a clock with a 50% duty cycle, but changes with nearby changing magnetic flux density. The sensor responds to the north or south magnetic pole, so orientation of the magnet on the protrusion is unimportant, which provides ease in the development of the system. 
A hall sensor produces a hall voltage when current flows through a semiconductor hall element, producing a magnetic field; when this field comes into contact with a permanent magnetic (with its own magnetic field) perpendicular to the current flow, a hall voltage is produced. The magnitude of the hall voltage is proportional to the strength of the magnetic field, and hall sensors measure that magnetic field. Using this knowledge, the code registers the user’s touch by detecting a change in the surrounding magnetic flux and calculating the corresponding duty cycle. A change in duty cycle from the norm of 50% signals that a push was registered. 
The code begins by setting the hall sensor as an input, the LED as an output, and setting the colors for the strip. An interrupt detects a change on the sensor pin; when a magnet is present, the code enters a function “detect” where if the sensor pin reading is high, it enters function “pulse_detect”, and if it’s low, it enters function “detect_low”. “Pulse_detect” calculates the total period of the cycle by getting the current time,  measuring the duration of the pulse and the length of the high part, and calculating the duty cycle.  The “detect_low” function determines when the pulse comes back down. Since the duty cycle of this sensor is ~50% when no magnet is detected, conditional statements for the duty cycle greater than and less than trigger the LED. If there is a change in duty cycle (magnet present), the LED turns off so the next one can turn on. 
Two small, flat, circular magnets will be connected to the side of the mechanical casing and when the user strikes the casing, the magnets will move down. These magnets were chosen for their optimal size that fits within mechanical casing and connects easily to the protrusion. Likewise, they are strong enough to alter the sensor’s magnetic field, but not too strong to attach to any surrounding metals. [image: ]

Figure 12: Hall Sensor EVM Schematic
(ignore the VCC on the right, all EVMs for the variations of this part are the same) 
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Figure 13: Subsystem 3: Sensors Block Diagram
3.5 Subsystem 4: LED Display 
Each slave board contains one Neopixel Adafruit LED that is externally mounted to the board. The LED rests on top of a platform within the mechanical casing to center the light to ensure the user sees it. The Adafruit was soldered to the wires connecting it to the board; testing consisted of just plugging the wires in (no solder) which resulted in it sometimes lighting up as opposed to all of the time. All the LEDs are set to light up with the color red. The LED stays on until the hall sensor recognizes the magnet, and will only turn off once that push is recognized. The LED is connected to GND, Vdd, and IO4.
Originally, a grid of devkit LEDs was going to be used. However, these would have taken up more board space, weren’t the brightest option, and couldn’t be easily mounted high enough in the button to be seen by the user. The Adafruit was able to be mounted high enough in the casing to be seen by the user. Likewise, because it was externally mounted far from the board, it took up less board space; making the PCB smaller allowed it to fit within a reasonably sized button that needs to be lightweight (for mounting on the wall). 

[image: ]
Figure 14: Subsystem 4: LED Display Block Diagram
3.6 Subsystem 5: Website User Interface 
The created website will interface with the ESP32 microcontroller via WiFi, and will use HTTP protocol in order to store data in a bucket in AWS. The website is activated by typing the IP address of the ESP32 into a web browser. Once the user clicks start on the website, the master board is given the signal to start the process of lighting different buttons up. The first button immediately lights up. As the drill runs the LEDs will turn on, and as the user hits the button, those LEDs will turn off. The total time between the first LED turning on and the user hitting the last LED will be measured and stored. When the drill terminates, the total time data will be sent back to the master and into AWS where it will be put into an array of total times with each other iteration of the drill.
The time data is stored in a bucket in AWS, which is optimal for this project. The user is able to access the total times at any point by logging into their personalized AWS data bucket and checking the array of total times. We chose cloud based storage of time data so that the user can access their data at any point, even if they do not actively have the button systems with them. AWS was the best option for cloud storage because of the ease at which the user can navigate to see their time and because it is a protected environment for data to be stored, so that only the user can access and change this data. 
We chose to use the HTTP protocol because it was familiar from the first semester assignment, it allowed for the customization that our project required, and it was very reliable (although somewhat slow depending on the amount of people working over SDNet). It also allowed for a very easy way for the user to interact with the system and it wasn’t too difficult to figure out how to make modifications according to our needs.

[image: ]
Figure 15: Subsystem 5: Website User Interface Block Diagram
3.7 Subsystem 6: Drill User Interface 
Subsystem 6 describes how the user interacts with the device once a drill is chosen. After the user clicks “Start” on the website, the master board communicates with the first slave board via ESP-NOW to execute the workout. While that first board has its LED on, it waits for a hit to be detected via a change detected by the hall sensor. Once the button is pushed, the LED is turned off and a new LED is turned on via a signal sent from one ESP32 board to the next using ESP-NOW. This causes the next board to turn on its own LED until it detects a hit and the process continues until the final button system has a hit detected. ESP-NOW allows the final slave board to send back a signal to the master that stops the running clock in order to calculate the session time.
We chose to use ESP-NOW as it is the main protocol used to establish wireless connection between ESP32-C3 boards. It is a relatively well documented protocol and there are a large amount of online resources that we were able to find for troubleshooting purposes. With this said, we had many issues with packet transmission, which after testing became the most noticeable problem we encountered with our devices. This ended up being a common theme with ESP-NOW projects that send information quickly, especially when there are many other ESP-NOW devices in the same room.
[image: ]
Figure 16: Subsystem 6: Drill User Interface Block Diagram
3.8 [bookmark: _heading=h.3vj36fmr2g3c]Total Circuitry Interface 
[image: ]Figure 17 : Kicad Schematic of PCB 
The KiCad schematic demonstrates the circuitry that connects all of the subsystems together. In general, the battery receives 5V when fully charged; this specific battery is only capable of discharging 3.7V, which is stepped down to 3.3V through the regulator. This voltage supplies the hall sensor and LED. The total circuit consisted of a simple connection of hall sensor to LED. The hall sensor operates by using that stepped down voltage in tandem with two resistors and a capacitor to ensure the part doesn’t overheat. The hall sensor output is connected to IO5, which indicates if a change in magnetic field occurs. The LED is connected to VDD, GND, and IO4. Based on the code, the LED turns on via a signal to IO4. When a change in magnetic field is detected, IO5 sends a signal to the ESP32, which then turns IO4 off. 
The PWR LED is connected to VBAT and therefore turns on when battery power is flowing. This LED lets the user know if the battery is connected and charged, as it will not tuen on if the battery has no power. The blue LED is connected to VUSB and light up when there is a stable power connection between the board and the USBC. This LED lets the tester know if the board is correctly plugged in to receive charging power. Lastly, the IO3 LED can be coded to blink by the ESP32 and was used when debugging the board to ensure that the ESP32 could be coded correctly. The decoupling capacitors were added to ensure the whole circuit was slowly powered so the voltage level didn’t fluctuate. This ensured that the boards would not have to be reset every time the board is powered on. The strapping pins were all 10k, and attached to IO2, IO8, and EN. These served as pull-up resistors. The total load current would be 25mA. Therefore, total power rating would be 25mA * 3.3V = 82.5mW. 

4 System Integration Testing
4.1 Integrated Set of Subsystems Testing
Board Testing Process 
Testing began with individual subsystems and gradually built up to troubleshooting the system as a whole. After assembling the boards with the equipment in the EIH (automatic and manual pick and place machines), voltage was measured at various spots to ensure the correct voltage levels were in the correct spaces. This ensured that the battery was fully charged (tested by plugging into the USB-c; this also allowed us to see if there was any faulty solder holding that part into place) and capable of supplying the correct voltage, and any faulty parts could be immediately replaced. 
To test the ADAfruit LED, wires were soldered to the part in Vdd, GND, and the data in holes. Molex connectors snap it into the board to make for easy assembly and disassembly for ease of use. The hall sensor was externally soldered to the board and bent to ensure it was oriented correctly for it to detect the magnet. Placing the board into the button base and using the magnet attached to the casing allowed us to mimic what a button press would look like; holes in the side of the base enabled us to see if the LED turned on and off in the correct situations and how close the magnet was to touching the sensor. To protect the hall sensor, if the magnet got too close, the protrusion in the case was further sanded down. This met the design requirement of having visual cues in the form of an LED, and that the slave button systems detected a user push via hall sensor within the button. These two combined showed that a change in magnet location relative to the sensor controls the LED turning on and off.
 A button requirement was that it must be light enough to be adhered to a wall but sturdy enough to withstand being pushed by the user. To test this, we tried various methods of adhesive to stick it to the wall, enacted pushing the button during a drill multiple times, and left the button hanging to ensure it stayed for a long time. To ensure the board within the button, the magnet, and the battery didn’t move, we adhered everything in place. A variety of springs were tested to find one with enough flexibility to ensure the user could push it quickly with minimal resistance. Each button subsystem was charged for 8 hours to ensure maximum battery capacity. The four slave button systems as well as the master button system were, then, arranged within a few feet of each other, mounted on a wall via Velcro. 

Software Testing Process 
There were multiple testing steps that led to the development of our final code used in the project demonstration. The code used in the final demonstration was split into four parts: “master code 1”, “master code 2”,” button 1 code”, “button 2-4 code”.
 “Master code 1” was the code used in the first master board that allowed for http protocol requests to be sent to the website as well as data delivery to the website. This was one of the first parts of our code that we tested, which we did by blinking an LED five times in response to a small push button attached to a devkit board. The blinking was initiated when “start” was pressed on the website and when finished the time it took was sent to the website to display. 
“Master code 2” allowed us to use ESPNow to send a start signal to button 1 after receiving a high voltage signal from a GPIO output from master board 1. When the drill was finished this code would then use a GPIO pin to send a high voltage signal back to master board 1, which served as a way to end the session. This was tested by sending a signal through ESPNow to one of the button boards and monitoring the GPIO pin read outs on both master board 1 and master board 2.
Button 1 code was very similar to the code for buttons 2-4. The main difference was that the drill always started and ended with button 1. Our project was configured like this in order to lower the amount of ESPNow connections master board 2 needed to maintain as ESPNow was already being finicky. Aside from this, all four buttons had the same code that sent a signal to a random button after the hall sensor detected that the button that was lit up had been pressed. We tested this by making code that just sent a signal between each board until a counter had reached a certain stop limit (it was set at 10 for testing purposes). Once the counter reached its limit, the boards would all light up showing that we were done and that the code had worked. 
All code listings can be found in the appendix.
4.2 Testing Affirmed Overall System Met Design Requirements
Our testing of the integrated set of subsystems ensured that each design requirement was accurately met. With the completion of several faultless workout drills, our integrated set of subsystems demonstrated its capability for the four slave button systems to provide visual cues to indicate a user when and where to strike. 
This also proved that the wireless nature of the system worked and the buttons successfully communicated with the master boards. The hall sensor responded to the magnetic change when the user hit the button. The adafruit always started and ended with the same button, but the rest of the order was correctly randomized. This LED was also bright enough to be seen through the casing and correctly lit up red. The user applied a variety of pressure when hitting the button to ensure the system would respond to both light and heavier force applied. The boards were only plugged into the batteries as their power source to ensure them being rechargeable. The buttons didn’t fall off the wall during the drill, so the adhesive worked and the springs used were flexible and easy to push. 
4.3 [bookmark: _heading=h.jixh39vhrjqq]Device Setup, Assembly, Integration 
	The buttons are assembled by connecting the three separate pieces: the clear dome piece, the outer casing, and the base component. A compartment is located in the bottom of the base piece for placement of the circuit board with an additional compartment in the side to hold the battery with wires connecting it to the ESP32-C3 board. Finally, after being wired to the board, the led can be attached to the shelf found in the center of the base piece. The three pieces fit together via poles constructed in the design of the outer casing. These poles travel through holes found in the clear dome and base pieces to hold all three pieces together. Holes are, also, found in the base piece for placement of the springs with the top of the springs resting in holders in the clear dome piece. This connection is reinforced via the use of screws that screw in through holes in the base piece and through the length of the poles. 
The buttons can be placed on the ground or attached to the wall in any orientation, but for our testing purposes, each button being a foot away from the two adjacent ones. The user will start the drill by clicking the “start” button on the website. After a 2-3 second delay, this will initiate the first button system to light up. The user will tap this pad, pushing on the clear part so that the pad detects a hit. The hit button will light off and another button system will light up. The user will continue to touch these randomized sequences of buttons as they light up. Once a sequence of ten buttons has lit up and the user successfully hit them all, the drill will end. All button systems will turn off and the total time the user took to complete the drill will automatically be stored online. These total times will also be stored in an AWS bucket, and the user will have access to this link. 

5 Users & Installation Manual  
5.1 How to Install Athletic Trainer Pads
The button systems come completely assembled and contain all necessary components for consumer use upon receival. Consumers should receive four slave button systems and a master board system (containing two boards) already in their respective mechanical casings. The four slave buttons possess the capabilities to be mounted to a wall or other surface via the provided velcro attachment. Velcro will already be attached to the bottom button surface and will only have to be secured onto the selected surface. To attach the Velcro, remove the plastic coating found on the surface piece and press the revealed adhesive onto the desired surface for about 30 seconds. Once the surface Velcro piece is secured, the button system can be mounted onto it. 
5.2 How to Setup Athletic Trainer Pads
The button systems will each have to be charged before use via the provided USB-c port found on the outer circumference of the casing. A USB-c accessible cord can be plugged into this port and plugged into any outlet. Upon charging, the button systems should be ready for use for several hours before needing to be charged again. During use, no cords or plug-ins are required for the button systems. These button systems can be arranged according to user preference as long as they are within range of each other prior to initiation of the workout. Users can choose a surface of their choice, including the wall, floor, cabinets, or any indoor or outdoor surface operable with the adhesive found on the velcro. This agility system must be set up in a location in which Wi-Fi is accessible. 
The IP address for the user to start the drill is on the bottom of the master board. Upon typing in the IP address, the user will be brought directly to the website where they will be able to click start whenever they want. Upon clicking start, the drill will initiate and the first button system will light up. At the end of the drill, the user will be able to check up on the website again where they will see the total amount of time the drill took to complete. The user can view the complete history of their drill time data via another provided link that brings the user to an AWS bucket containing these times.
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Figure 18: Website User Interface Prior to Initiating of Drill
5.3 How to Determine if Athletic Trainer Pads are Functioning Properly
In order to determine whether Athletic Trainer Pads are functioning properly, the user can look at several things. Firstly, upon initiating a drill, the user can glance at the LEDs of each slave button system and ascertain whether there is one lighting up. Furthermore, if the Athletic Trainer Pads are operating correctly, when the user presses down on the button system containing the lit LED, another LED should light up nearly immediately. This should occur for a total of ten button presses per workout drill. Furthermore, proper functioning of Athletic Trainer Pads should involve the capability of compression of the clear dome piece, located on each button system, upon an applied force. Faultless performance of the Athletic Trainer Pads should, also, include the ability for the user to enter the given IP address and view the website interface and the ability to initiate a workout drill via clicking of start button found on the website interface. This should trigger the first LED to light up on one of the button systems. Furthermore, upon completion of the workout drill, data should be accessed through a provided link to see their total times in a list format. If any of these qualities are not met, the user can determine their product is not working correctly. 
5.4 How to Troubleshoot Athletic Trainer Pads
If the user determines Athletic Trainer Pads is not functioning properly, the user can take several routes to decipher the presenting issue. 
To begin, if the LEDs of a button system(s) do not appear to be lighting up or are very faint, the user can try plugging the button system(s) into an outlet via a USB-c cord to solve the potential problem of a lack of battery power. If upon pressing the lit button system another does not light up, the user should attempt recharging as well and ensure the button systems are within range.
When encountering issues with mounting of the button systems, the user should confirm the chosen surface is clean and the adhesive found on the Velcro piece is pressed firmly onto the surface. If not, the user can reattach any Velcro found in a local hardware store. 
If the user runs into an issue getting the website interface to display, the user can attempt to reload/reboot the server. Furthermore, when encountering problems with either displaying the user interface or initiating a workout drill, the user should, also, check to make sure that they are operating the website and website system on a secure, stable Wi-Fi network and that the connection is established. If the website fails to launch, it is almost certainly a WiFi connection issue between either the computer the user is using or the master board.
	If problems persist with charging, the battery likely needs to be replaced. The user can open the button system by taking out the screws on the bottom of the button system. From here, the user can see the internal circuitry of the button system. The user should take out the entire circuit board, including the battery and the LED. New battery packs can be purchased online for $5.50 and replace the old battery pack exactly where they are.
	If any further problems persist with hardware or software, we encourage the user to reach out to our team. We can give more hands on advice for how to fix the issue. This will likely result in sending the board back to our team where we will find the individual issue and fix it.

6 To-Market Design Changes
If given additional time, there are several enhancements we would aim to incorporate in future designs before aiming to sell it commercially. 
Hardware enhancements would include having variation in the colors of the LEDs. This way, drills can be based on a user hitting the buttons in the correct color sequence. Furthermore, having all the LEDs light up simultaneously in every button and having the user hit the colors in a specified order could be a variation of this drill. Instead of one LED in the center of the casing, a grid of LEDs could be implemented to cover the entire inner casing, so the light is definitely visible and makes it more aesthetically pleasing for the user. The communication protocol could be adapted with new versions explored to allow greater distance between the button systems to enable longer-distance drills, especially considering the user will mount it on the wall or the ground. The number of buttons within the design (more than four slave buttons) could be implemented to make the drills more complex, larger, and varied for the user. 
To allow for further flexibility in terms of user training, we would develop and adopt several ways for the user to tailor their workouts to their preferences. This would include the possibility of users deciding their difficulty level, which would change length of the drill, the number of buttons to be pressed, the number of available colors, etc. Users could also focus on a particular element of their training (such as a specific side, specific sequence of touches or movements, etc.), or if they want to implement an adaptive mode. The option of an adaptive mode would incorporate machine learning and allow for the user to improve on weak areas that the system identifies. In the adaptive mode, new workouts will be created based on data collected in the previous workout(s). Extreme machine learning would allow the system to update with the user in real-time by slowly increasing the difficulty level while the user is performing the drill. 
Furthermore, additional measures would be taken to expand upon data collection and analysis. Software would be developed to collect data regarding button position, time from one button press to the next, and an option for users to input physical characteristics such as age, weight, height, etc. This would enable more specific and personalized analysis reports for the user and machine learning could, again, be implemented to adapt workouts to this additional data. Another future enhancement we would seek to implement is the ability for the workout software to distinguish between multiple users. This improvement would allow for users to input their name at the start of the drill and the software will store the data as well as generate reports and workouts based solely upon the individual user. Again, in terms of software, we would institute programming that produces graphs for the users to further view and understand their workout drill data. This would make our website even more user-friendly by enabling the user to clearly visualize their time data and compare it to past workouts. 
Additionally, one of the most significant problems we faced throughout the design process was ensuring reliability and consistency with each workout drill. A large obstacle in achieving this was the functionality of ESP-NOW. This communication protocol was extremely finicky and would switch between functioning and failing and back without a single change being implemented in either the software or hardware. Thus, in order to ensure reliable functionality for users and to save them the difficulty of troubleshooting, we would look into and implement another communication protocol. In doing so, this would allow for dependable communication between the ESP32-C3 boards throughout the drill workout. This change would help ensure the completion of the entire workout drill without experiencing failure. Adding a choice for the user to determine how many buttons they want lit up in their drill (4,6,10, possibly more with more development) would also allow for different lengths of workout, depending on the user’s needs. 
Finally, another significant development we would incorporate in future designs is a power saver mode that automatically turns on in between workout repetitions to reduce the load off of the battery and foster greater battery life. 

7 Conclusions
	The project was an overall success and a proof of concept for the Athletic Trainer Pods as a method of training speed and agility. Every subsystem worked extremely well proving that the button systems fulfill their function. Looking into the mechanical casing, the design allowed the button to be assembled and disassembled very easily, durable to take any amount of force, on touch it was sensitive to allow for both light and powerful hits, and the springs made it very pleasing to push. As for the battery, it was small enough to fit perfectly into the mechanical button with the PCB without making any large design changes and provided enough charge to allow the button systems to run wirelessly for multiple hours without being charged. The hall sensor worked as a perfect way to detect hits because the hall sensor and magnet allow a hit to be detected with any level push in of the dome casing, and additionally no matter how hard the user hits the pad no physical contact will be made with any electronic components. The LED display worked well because it shined very bright through the clear resin of the dome casing without exhausting the battery. The website worked well as a method of starting the drill seamlessly whenever the user is ready, as well as seeing the time results when the drill is complete. These elements are implemented well together, creating buttons that are able to connect to the website, shine bright, detect hits, and maintain power.
	The main part of the project that could have been improved was the communication between the button systems. ESPNow allowed the button systems to “talk” to each other to determine when one button should turn off and the next should light up. The issue with ESPNow in our project is that if the time for the next button to light up was quick, we would have a transmission failure, essentially meaning that the communication was not being delivered. We therefore chose to have some longer delays so that communication would always go through. These longer delays hindered the drill’s ability to fully test the user’s speed, as one would have to wait 1-3 seconds after one button is pushed for the next one to light up. Ideally, we could have figured out how to work around ESPNow issues with transmission failure to have quick and complete communication between the buttons. We could also use a different type of communication, such as Mesh Networking, to make this communication immediate.
	Overall, this system works very well to accomplish our goals. It fulfills the ability to test users in speed, agility, and reflex. After our final testing to the Electrical Engineering Faculty, we saw that testers were most interested in how the drill allows for improvement in physical ability, and as a way to measure progress in physical therapy. Additionally, certain comments were made about how this could keep children entertained and we saw a new market arise as a game for children. Our group hopes that this Senior Design project will improve the livelihood of all users and will bring the five of us one step closer to graduating.

8 Appendices
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Figure 19: Board Schematic 
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Figure 20 : Current Consumption of ESP32-C3 
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Code

Master Board Code:
/* Include Statements */
#include <Arduino.h>
#include <stdio.h>
#include <esp_now.h>
#include <WiFi.h>
#include <HTTPClient.h>
#include <Update.h>
#include <WiFiClientSecure.h>
#include <AsyncTCP.h>
#include <ESPAsyncWebServer.h>
#include <Wire.h>

/* Constant Initialization */
int flag = 1;
double start_time = 0;
double end_time = 0;
double session_time = 0;


/* Constant Initialization */
const int send_pin = 7;
const int receive_pin = 8;


/* WiFi */
const char* ssid = "SDNet";
const char* password = "CapstoneProject";
const int serverPort = 80;
WiFiServer server2(80);
AsyncWebServer server(80);

/* Bucket */
const char *s3Url = "https://seniordesigndatabucket.s3.us-east-2.amazonaws.com/input.txt";
const char *rootCACert = "-----BEGIN CERTIFICATE-----\n"
                        "MIIDQTCCAimgAwIBAgITBmyfz5m/jAo54vB4ikPmljZbyjANBgkqhkiG9w0BAQsF"
                        "ADA5MQswCQYDVQQGEwJVUzEPMA0GA1UEChMGQW1hem9uMRkwFwYDVQQDExBBbWF6"
                        "b24gUm9vdCBDQSAxMB4XDTE1MDUyNjAwMDAwMFoXDTM4MDExNzAwMDAwMFowOTEL"
                        "MAkGA1UEBhMCVVMxDzANBgNVBAoTBkFtYXpvbjEZMBcGA1UEAxMQQW1hem9uIFJv"
                        "b3QgQ0EgMTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBALJ4gHHKeNXj"
                        "ca9HgFB0fW7Y14h29Jlo91ghYPl0hAEvrAIthtOgQ3pOsqTQNroBvo3bSMgHFzZM"
                        "9O6II8c+6zf1tRn4SWiw3te5djgdYZ6k/oI2peVKVuRF4fn9tBb6dNqcmzU5L/qw"
                        "IFAGbHrQgLKm+a/sRxmPUDgH3KKHOVj4utWp+UhnMJbulHheb4mjUcAwhmahRWa6"
                        "VOujw5H5SNz/0egwLX0tdHA114gk957EWW67c4cX8jJGKLhD+rcdqsq08p8kDi1L"
                        "93FcXmn/6pUCyziKrlA4b9v7LWIbxcceVOF34GfID5yHI9Y/QCB/IIDEgEw+OyQm"
                        "jgSubJrIqg0CAwEAAaNCMEAwDwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMC"
                        "AYYwHQYDVR0OBBYEFIQYzIU07LwMlJQuCFmcx7IQTgoIMA0GCSqGSIb3DQEBCwUA"
                        "A4IBAQCY8jdaQZChGsV2USggNiMOruYou6r4lK5IpDB/G/wkjUu0yKGX9rbxenDI"
                        "U5PMCCjjmCXPI6T53iHTfIUJrU6adTrCC2qJeHZERxhlbI1Bjjt/msv0tadQ1wUs"
                        "N+gDS63pYaACbvXy8MWy7Vu33PqUXHeeE6V/Uq2V8viTO96LXFvKWlJbYK8U90vv"
                        "o/ufQJVtMVT8QtPHRh8jrdkPSHCa2XV4cdFyQzR1bldZwgJcJmApzyMZFo6IQ6XU"
                        "5MsI+yMRQ+hDKXJioaldXgjUkK642M4UwtBV8ob2xJNDd2ZhwLnoQdeXeGADbkpy"
                        "rqXRfboQnoZsG4q5WTP468SQvvG5"
                        "-----END CERTIFICATE-----\n";


String header;

/* Setup */
void setup() {

 /* Initialization */
 Serial.begin(115200);

 pinMode(send_pin, OUTPUT);
 pinMode(receive_pin, INPUT);
 digitalWrite(send_pin, LOW);

 /* Connect to WiFi */
 Serial.print("Connecting to ");
 Serial.println(ssid);
 WiFi.begin(ssid, password);
 while (WiFi.status() != WL_CONNECTED) {
   delay(500);
   Serial.print(".");
 }
 Serial.println("");
 Serial.println("WiFi connected.");
 Serial.println("IP address: ");
 Serial.println(WiFi.localIP());
 server2.begin();

}

void loop()
{
 WiFiClient client = server2.available();


 if (client) {
   String currentLine = "";
   while (client.connected()) {
     if (client.available()) {
       char c = client.read();
       header += c;
       if (c == '\n') {
         if (currentLine.length() == 0) {
           client.println("HTTP/1.1 200 OK");
           client.println("Content-type:text/html");
           client.println("Connection: close");
           client.println();
          
           if (header.indexOf("GET /start") >= 0) {
            
             delay(2000);
             start_time = millis();
             digitalWrite(send_pin, HIGH);
             while (digitalRead(receive_pin) == 0)
             {
               Serial.println(send_pin);
             }
             digitalWrite(send_pin, LOW);


             end_time = millis();
             session_time = (end_time - start_time)/1000;
             flag = 0;

           }

           client.println("<!DOCTYPE html><html>");
           client.println("<head><meta name=\"viewport\" content=\"width=device-width, initial-scale=1\">");
           client.println("<link rel=\"icon\" href=\"data:,\">");
           client.println("<style>html { font-family: Helvetica; display: inline-block; margin: 0px auto; text-align: center;}");
           client.println(".button { background-color: #4CAF50; border: none; color: white; padding: 16px 40px;");
           client.println("text-decoration: none; font-size: 30px; margin: 2px; cursor: pointer;}");
           client.println("</style></head>");
          
           client.println("<body><h1>We Just Want To Graduate</h1>");
           client.println("<p>Total Time: " + String(session_time) + " seconds</p>");
           client.println("<button class=\"button\" onclick=\"window.location.href='/start'\">Start</button><br>");
           client.println("</body></html>");
          
           client.println();
           break;
         } else {
           currentLine = "";
         }
       } else if (c != '\r') {
         currentLine += c;
       }
     }
   }

   header = "";
   client.stop();
   Serial.println("Client disconnected.");

   if (flag == 0){
     Serial.begin(115200);
     delay(100);


     // Connect to Wi-Fi
     Serial.println("Connecting to WiFi...");
     WiFi.begin(ssid, password);
     while (WiFi.status() != WL_CONNECTED)
     {
       delay(1000);
       Serial.println("Connecting to WiFi...");
     }
     Serial.println("Connected to WiFi");




     // Use WiFiClientSecure for HTTPS requests
     WiFiClientSecure client;




     // Load root CA certificate
     client.setCACert(rootCACert);




     // Handle requests to /retrieveAndSendProgram endpoint
     server.on("/retrieveAndSendProgram", HTTP_GET, [](AsyncWebServerRequest *request)
              {
           // Your code to retrieve and send the program
           request->send(200, "text/plain", "Program retrieval initiated"); });




     server.begin(); // Start server




     double num = session_time;




     Serial.println("Connecting to Lambda...");
     if (client.connect("useaqdrtmuodjkv72hwazclhyy0xmmge.lambda-url.us-east-1.on.aws", 443)) {
     client.println(String("GET ") + "https://useaqdrtmuodjkv72hwazclhyy0xmmge.lambda-url.us-east-1.on.aws/-params?totalTime=" + String(num) +  " HTTP/1.1\r\n" +
                   "Host: useaqdrtmuodjkv72hwazclhyy0xmmge.lambda-url.us-east-1.on.aws\r\n" +
                   "\r\n");
       delay(500);
     }


     client.stop();


     //Download numbers.txt from S3
    Serial.println("Downloading timedata.txt from S3...");
     if (client.connect("seniordesigndatabucket.s3.amazonaws.com", 443))
     {
       client.println(String("GET ") + "https://seniordesigndatabucket.s3.us-east-2.amazonaws.com/timedata.txt" + " HTTP/1.1\r\n" +
                  "Host: seniordesigndatabucket.s3.amazonaws.com\r\n" +
                  "Connection: close\r\n\r\n");
       delay(500);




       // Read response
       while (client.connected())
       {
         String line = client.readStringUntil('\n');
         if (line == "\r")
         {
           // Headers received, skip them
           break;
         }
       }




 
       // Output response body
       while (client.available())
       {
         char buf[BUFSIZ] = {0};
         client.read((uint8_t *) buf, BUFSIZ);
         Serial.print(buf);
       }




       Serial.println();
       Serial.println("File downloaded successfully");
     }
     else
     {
       Serial.println("Connection failed");
     }




     client.stop();
     // Nothing to do here
     flag = 1;
   }


  
 }

}



Master Board 2 Code:
/* Include Statements */
#include <Arduino.h>
#include <stdio.h>
#include <esp_now.h>
#include <WiFi.h>
#include <HTTPClient.h>
#include <Update.h>
#include <WiFiClientSecure.h>
#include <AsyncTCP.h>
#include <ESPAsyncWebServer.h>
#include <Wire.h>

/* Constant Initialization */
const int send_pin = 7;
const int receive_pin = 8;
int session_done = 0;
uint8_t broadcastAddress[] = {0xDC, 0xDA, 0x0C, 0xFE, 0xBC, 0x0C};

/* ESPNow  Initializations */
int button_out;


int button_in = 0;


int testflag = 1;
String success;

typedef struct struct_message
{
 int button_send;
} struct_message;


struct_message BReadings;
struct_message incomingBReadings;
esp_now_peer_info_t peerInfo;

/* ESPNow Functions */
void OnDataSent(const uint8_t *mac_addr, esp_now_send_status_t status)
{
 Serial.print("\r\nLast Packet Send Status:\t");
 Serial.println(status == ESP_NOW_SEND_SUCCESS ? "Delivery Success" : "Delivery Fail");
 if (status == 0)
 {
   success = "Delivery Success :)";
 }
 else
 {
   success = "Delivery Fail :(";
 }
}

void OnDataRecv(const uint8_t *mac, const uint8_t *incomingData, int len)
{
 memcpy(&incomingBReadings, incomingData, sizeof(incomingBReadings));
 Serial.print("Bytes received: ");
 Serial.println(len);
 button_in = incomingBReadings.button_send;
}

/* Setup */
void setup() {

 /* Initialization */
 Serial.begin(115200);

 /* Pin Set Up */
 pinMode(send_pin, OUTPUT);
 pinMode(receive_pin, INPUT);
 // digitalWrite(opin, HIGH);
 // digitalWrite(ledPin, LOW);

 /* ESPNow Init */
 WiFi.mode(WIFI_STA);
  
 if (esp_now_init() != ESP_OK)
 {
   Serial.println("Error initializing ESP-NOW");
   return;
 }

 esp_now_register_send_cb(OnDataSent);

 /* Register Peer */
 peerInfo.channel = 0;
 peerInfo.encrypt = false;
 memcpy(peerInfo.peer_addr, broadcastAddress, 6);

 /* Add Peer */
 if (esp_now_add_peer(&peerInfo) != ESP_OK)
 {
 Serial.println("Failed to add peer");
 return;
 }

 esp_now_register_recv_cb(OnDataRecv);

 digitalWrite(send_pin, LOW);
}

void loop()
{  
  Serial.println(digitalRead(receive_pin));        
 if (digitalRead(receive_pin) == 1) // change condition to testflag/read receive pin
 {
   button_out = 4;
   BReadings.button_send = button_out;
   esp_err_t result1 = esp_now_send(broadcastAddress, (uint8_t *)&BReadings, sizeof(BReadings));
   while (session_done == 0)
   {
     session_done = button_in;
     Serial.println("!");
   }
   digitalWrite(send_pin, HIGH);
   delay(1000);
   digitalWrite(send_pin, LOW);

   button_out = -1;
   BReadings.button_send = button_out;
   delay(2000);
   esp_err_t result2 = esp_now_send(broadcastAddress, (uint8_t *)&BReadings, sizeof(BReadings));
   session_done = 0; 
   // testflag = 0;
   Serial.println("Done!");
   button_in = 0;
 }

  

  
}





Button 1 Code: 
#include <Arduino.h>
#include <stdio.h>
#include <esp_now.h>
#include <WiFi.h>
#include <Adafruit_NeoPixel.h>
#include <HTTPClient.h>
#include <Update.h> // Required for OTA (Over-The-Air) updates
#include <WiFiClientSecure.h>
#include <AsyncTCP.h>
#include <ESPAsyncWebServer.h>
#include <Wire.h>




/* Constant Initialization */
int sensorPin = 5;
int neoPixelPin = 4;
int numPixels = 7;
volatile unsigned long pulse_period = 0; // Variable to store the pulse duration
volatile unsigned long last_pulse_start = 0; // Variable to store the start time of the last pulse
unsigned long last_measurement_time = 0; // Variable to store the time of the last duty cycle measurement
unsigned long last_loop_time = 0;
unsigned long fall_time = 0;
volatile float duty_cycle = 0;
volatile unsigned long pulse_length = 0;
int r = 255;
int g = 0;
int b = 0;
int counter = -1;
int old_counter = 11;
int difference = 0;
int flag = 1;
int random_num;


/* ESPNow Initialization */
int button_out = 0;
int button_in = -1;
String success;


/* Struct Creation */
typedef struct struct_message
{
int button_send;
} struct_message;


struct_message BReadings;
struct_message incomingBReadings;


/* Mac Adresses */
uint8_t broadcastAddress_M[] = {0xDC, 0xDA, 0x0C, 0xFE, 0xBA, 0xD0}; // Master Button
uint8_t broadcastAddress_1[] = {0xDC, 0xDA, 0x0C, 0xFE, 0xBC, 0x2C}; // Button 2
uint8_t broadcastAddress_2[] = {0xDC, 0xDA, 0x0C, 0xFE, 0xBB, 0x10}; // Button 3
uint8_t broadcastAddress_3[] = {0xDC, 0xDA, 0x0C, 0xFE, 0xBB, 0x20}; // Button 4




/* Adafruit Initialization */
Adafruit_NeoPixel strip = Adafruit_NeoPixel(numPixels, neoPixelPin, NEO_GRB + NEO_KHZ800);


/* Peer Info */
esp_now_peer_info_t peerInfo;


/* Hall Functions */
void pulse_detect() {
//Serial.println("Rising Cock edge");
unsigned long current_time = micros(); // Get the current time
pulse_period = current_time - last_pulse_start; // Calculate the duration of the pulse
pulse_length = fall_time - last_pulse_start; //length of high part
duty_cycle = (double) pulse_length / pulse_period;
last_pulse_start = current_time; // Update the start time of the last pulse
}
void detect_low() {
fall_time = micros();
}
void detect() {
if (digitalRead(sensorPin) == HIGH) {
  pulse_detect();
}
else {
  detect_low();
}
}


/* ESPNow Function: Data Sent */
void OnDataSent(const uint8_t *mac_addr, esp_now_send_status_t status)
{
Serial.print("\r\nLast Packet Send Status:\t");
Serial.println(status == ESP_NOW_SEND_SUCCESS ? "Delivery Success" : "Delivery Fail");
if (status == 0)
{
  success = "Delivery Success :)";
}
else
{
  success = "Delivery Fail :(";
}
}


/* ESPNow Function: Data Recieved */
void OnDataRecv(const uint8_t *mac, const uint8_t *incomingData, int len)
{
memcpy(&incomingBReadings, incomingData, sizeof(incomingBReadings));
Serial.print("Bytes received: ");
Serial.println(len);
button_in = incomingBReadings.button_send;
}




void setup()
{


/* Pin Mode + Serial Monitor Setup */
Serial.begin(115200);
pinMode(sensorPin, INPUT);
pinMode(neoPixelPin, OUTPUT);
strip.begin();  // initialize the strip
strip.show();   // make sure it is visible
strip.clear();  // Initialize all pixels to 'off'


/* Set NeoPixel Color */
for( int i = 0; i < numPixels; i++ ){
  strip.setPixelColor(i, r, g, b);
  delay(10);
}


/* Hall Sensor Interrupt */
attachInterrupt(digitalPinToInterrupt(sensorPin), detect, CHANGE);


/* ESPNow Initialization */
WiFi.mode(WIFI_STA);
if (esp_now_init() != ESP_OK)
{
  Serial.println("Error initializing ESP-NOW");
  return;
}
esp_now_register_send_cb(OnDataSent); // Callback register


/* Register Master Button */


 peerInfo.channel = 0;
peerInfo.encrypt = false;
memcpy(peerInfo.peer_addr, broadcastAddress_M, 6);
if (esp_now_add_peer(&peerInfo) != ESP_OK)
{
  Serial.println("Failed to add peer 4");
  return;
}


/* Register B2 */
// peerInfo.channel = 0;
// peerInfo.encrypt = false;
memcpy(peerInfo.peer_addr, broadcastAddress_1, 6);
if (esp_now_add_peer(&peerInfo) != ESP_OK)
{
  Serial.println("Failed to add peer 1");
  return;
}


/* Register B3 */
// peerInfo.channel = 0;
// peerInfo.encrypt = false;
memcpy(peerInfo.peer_addr, broadcastAddress_2, 6);
if (esp_now_add_peer(&peerInfo) != ESP_OK)
{
  Serial.println("Failed to add peer 2");
  return;
}


/* Register B4 */
// peerInfo.channel = 0;
// peerInfo.encrypt = false;
memcpy(peerInfo.peer_addr, broadcastAddress_3, 6);
if (esp_now_add_peer(&peerInfo) != ESP_OK)
{
  Serial.println("Failed to add peer 3");
  return;
}


 // Register for a callback function that will be called when data is received
esp_now_register_recv_cb(OnDataRecv);
}


void loop()
{
 counter = button_in;
while (counter > 0)
{
  counter = button_in;
  difference = counter - old_counter;
  Serial.println(counter);
  Serial.println(old_counter);
  delay(2000);
  if (difference < 0)
  {
    /* Turn LED ON */
    for( int i = 0; i < numPixels; i++ ){
      strip.setPixelColor(i, r, g, b);
      delay(10);
    }


  
    /* Check Hall Sensor + Keep in Loop*/
    flag = 1;


    while (flag == 1)
    {


      if (duty_cycle*100 < 45.0) {
        for( int i = 0; i < numPixels; i++ ){
          strip.setPixelColor(i, 0, 0, 0);
          strip.show();
          strip.clear();
          delay(10);
        }
      
        flag = 0;
      
        random_num = random(1,4);


        if (random_num == 1 & counter > 0)
        {
          button_out = counter-1;
          BReadings.button_send = button_out;
          esp_err_t result = esp_now_send(broadcastAddress_1, (uint8_t *)&BReadings, sizeof(BReadings));
        }


        else if (random_num == 2 & counter > 0)
        {
          button_out = counter-1;
          BReadings.button_send = button_out;
          esp_err_t result = esp_now_send(broadcastAddress_2, (uint8_t *)&BReadings, sizeof(BReadings));
        }
      
        else if (random_num == 3 & counter > 0)
        {
          button_out = counter-1;
          BReadings.button_send = button_out;
          esp_err_t result = esp_now_send(broadcastAddress_3, (uint8_t *)&BReadings, sizeof(BReadings));
        }
      }


      else if (duty_cycle*100 > 55.0) {


        for( int i = 0; i < numPixels; i++ ){


          strip.setPixelColor(i, 0, 0, 0);
          strip.show();
          strip.clear();
          delay(10);
        }
      
        flag = 0;


        random_num = random(1,4);


        if (random_num == 1 & counter > 0)
        {
          button_out = counter-1;
          BReadings.button_send = button_out;
          esp_err_t result = esp_now_send(broadcastAddress_1, (uint8_t *)&BReadings, sizeof(BReadings));
        }


        else if (random_num == 2 & counter > 0)
        {
          button_out = counter-1;
          BReadings.button_send = button_out;
          esp_err_t result = esp_now_send(broadcastAddress_2, (uint8_t *)&BReadings, sizeof(BReadings));
        }
      
        else if (random_num == 3 & counter > 0)
        {
          button_out = counter-1;
          BReadings.button_send = button_out;
          esp_err_t result = esp_now_send(broadcastAddress_3, (uint8_t *)&BReadings, sizeof(BReadings));
        }
              
      }


      else {
        for( int i = 0; i < numPixels; i++ ){
          strip.setPixelColor(i, r, g, b);
          strip.show();
          delay(10);
        } 
      }
    
    }
  
    /* update old counter */
    old_counter = counter;
  }
  else
  {
    /* nothing?? */
  }
 
}


while (counter == 0)
{
  /* Send back to master */
  button_out = 1;
  BReadings.button_send = button_out;
  Serial.println(counter);
  Serial.println(old_counter);
  delay(2000);
  esp_err_t result = esp_now_send(broadcastAddress_M, (uint8_t *)&BReadings, sizeof(BReadings));
  counter = -1;
  button_in = -1;
  button_out = 0;
  old_counter = 11;
  difference = 0;
}


}





Buttons 2, 3, & 4 Code: 
#include <Arduino.h>
#include <stdio.h>
#include <esp_now.h>
#include <WiFi.h>
#include <Adafruit_NeoPixel.h>
#include <HTTPClient.h>
#include <Update.h> // Required for OTA (Over-The-Air) updates
#include <WiFiClientSecure.h>
#include <AsyncTCP.h>
#include <ESPAsyncWebServer.h>
#include <Wire.h>




/* Constant Initialization */
int sensorPin = 5;
int neoPixelPin = 4;
int numPixels = 7;
volatile unsigned long pulse_period = 0; // Variable to store the pulse duration
volatile unsigned long last_pulse_start = 0; // Variable to store the start time of the last pulse
unsigned long last_measurement_time = 0; // Variable to store the time of the last duty cycle measurement
unsigned long last_loop_time = 0;
unsigned long fall_time = 0;
volatile float duty_cycle = 0;
volatile unsigned long pulse_length = 0;
int r = 255;
int g = 0;
int b = 0;
int counter = -1;
int old_counter = 11;
int difference = 0;
int flag = 1;
int random_num;


/* ESPNow Initialization */
int button_out = 0;
int button_in = 0;
String success;


/* Struct Creation */
typedef struct struct_message
{
int button_send;
} struct_message;


struct_message BReadings;
struct_message incomingBReadings;


/* Mac Adresses */
uint8_t broadcastAddress_1[] = {0xDC, 0xDA, 0x0C, 0xFE, 0xBC, 0x0C}; // Button 2
uint8_t broadcastAddress_2[] = {0xDC, 0xDA, 0x0C, 0xFE, 0xBC, 0x2C}; // Button 3
uint8_t broadcastAddress_3[] = {0xDC, 0xDA, 0x0C, 0xFE, 0xBB, 0x20}; // Button 4




/* Adafruit Initialization */
Adafruit_NeoPixel strip = Adafruit_NeoPixel(numPixels, neoPixelPin, NEO_GRB + NEO_KHZ800);


/* Peer Info */
esp_now_peer_info_t peerInfo;


/* Hall Functions */
void pulse_detect() {
//Serial.println("Rising Cock edge");
unsigned long current_time = micros(); // Get the current time
pulse_period = current_time - last_pulse_start; // Calculate the duration of the pulse
pulse_length = fall_time - last_pulse_start; //length of high part
duty_cycle = (double) pulse_length / pulse_period;
last_pulse_start = current_time; // Update the start time of the last pulse
}
void detect_low() {
fall_time = micros();
}
void detect() {
if (digitalRead(sensorPin) == HIGH) {
  pulse_detect();
}
else {
  detect_low();
}
}


/* ESPNow Function: Data Sent */
void OnDataSent(const uint8_t *mac_addr, esp_now_send_status_t status)
{
Serial.print("\r\nLast Packet Send Status:\t");
Serial.println(status == ESP_NOW_SEND_SUCCESS ? "Delivery Success" : "Delivery Fail");
if (status == 0)
{
  success = "Delivery Success :)";
}
else
{
  success = "Delivery Fail :(";
}
}


/* ESPNow Function: Data Recieved */
void OnDataRecv(const uint8_t *mac, const uint8_t *incomingData, int len)
{
memcpy(&incomingBReadings, incomingData, sizeof(incomingBReadings));
Serial.print("Bytes received: ");
Serial.println(len);
button_in = incomingBReadings.button_send;
}




void setup()
{


/* Pin Mode + Serial Monitor Setup */
Serial.begin(115200);
pinMode(sensorPin, INPUT);
pinMode(neoPixelPin, OUTPUT);
strip.begin();  // initialize the strip
strip.show();   // make sure it is visible
strip.clear();  // Initialize all pixels to 'off'


/* Set NeoPixel Color */
for( int i = 0; i < numPixels; i++ ){
  strip.setPixelColor(i, r, g, b);
  delay(10);
}


/* Hall Sensor Interrupt */
attachInterrupt(digitalPinToInterrupt(sensorPin), detect, CHANGE);


/* ESPNow Initialization */
WiFi.mode(WIFI_STA);
if (esp_now_init() != ESP_OK)
{
  Serial.println("Error initializing ESP-NOW");
  return;
}
esp_now_register_send_cb(OnDataSent); // Callback register


/* Register B2 */
peerInfo.channel = 0;
peerInfo.encrypt = false;
memcpy(peerInfo.peer_addr, broadcastAddress_1, 6);
if (esp_now_add_peer(&peerInfo) != ESP_OK)
{
  Serial.println("Failed to add peer");
  return;
}


/* Register B3 */
memcpy(peerInfo.peer_addr, broadcastAddress_2, 6);
if (esp_now_add_peer(&peerInfo) != ESP_OK)
{
  Serial.println("Failed to add peer");
  return;
}


/* Register B4 */
memcpy(peerInfo.peer_addr, broadcastAddress_3, 6);
if (esp_now_add_peer(&peerInfo) != ESP_OK)
{
  Serial.println("Failed to add peer");
  return;
}
 // Register for a callback function that will be called when data is received
esp_now_register_recv_cb(OnDataRecv);
}


void loop()
{


counter = button_in;
if (counter == -1)
{
  old_counter = 11;
  counter = -1;
  button_in = 0;
  button_out = 0;
  difference = 0;
  // button_out = -1; not needed??
}
 while (counter > 2)
 {

  counter = button_in;
  difference = counter - old_counter;
  Serial.println(counter);
  Serial.println(old_counter);
  delay(2000);
  if (difference < 0 & counter > 2)
  {
    /* Turn LED ON */
    for( int i = 0; i < numPixels; i++ ){
      strip.setPixelColor(i, r, g, b);
      delay(10);
    }


  
    /* Check Hall Sensor + Keep in Loop*/
    flag = 1;


    while (flag == 1)
    {
    
    
      if (duty_cycle*100 < 45.0) {
        for( int i = 0; i < numPixels; i++ ){
          strip.setPixelColor(i, 0, 0, 0);
          strip.show();
          strip.clear();
          delay(10);
        }
        flag = 0;


        random_num = random(1,4);


        if (random_num == 1)
        {
          button_out = counter-1;
          BReadings.button_send = button_out;
          esp_err_t result = esp_now_send(broadcastAddress_1, (uint8_t *)&BReadings, sizeof(BReadings));
        }


        else if (random_num == 2)
        {
          button_out = counter-1;
          BReadings.button_send = button_out;
          esp_err_t result = esp_now_send(broadcastAddress_2, (uint8_t *)&BReadings, sizeof(BReadings));
        }
      
        else if (random_num == 3)
        {
          button_out = counter-1;
          BReadings.button_send = button_out;
          esp_err_t result = esp_now_send(broadcastAddress_3, (uint8_t *)&BReadings, sizeof(BReadings));
        }
      }


      else if (duty_cycle*100 > 55.0) {


        for( int i = 0; i < numPixels; i++ ){


          strip.setPixelColor(i, 0, 0, 0);
          strip.show();
          strip.clear();
          delay(10);
        }
        flag = 0;


        random_num = random(1,4);


        if (random_num == 1)
        {
          button_out = counter-1;
          BReadings.button_send = button_out;
          esp_err_t result = esp_now_send(broadcastAddress_1, (uint8_t *)&BReadings, sizeof(BReadings));
        }


        else if (random_num == 2)
        {
          button_out = counter-1;
          BReadings.button_send = button_out;
          esp_err_t result = esp_now_send(broadcastAddress_2, (uint8_t *)&BReadings, sizeof(BReadings));
        }
      
        else if (random_num == 3)
        {
          button_out = counter-1;
          BReadings.button_send = button_out;
          esp_err_t result = esp_now_send(broadcastAddress_3, (uint8_t *)&BReadings, sizeof(BReadings));
        }
              
      }


      else {
        for( int i = 0; i < numPixels; i++ ){
          strip.setPixelColor(i, r, g, b);
          strip.show();
          delay(10);
        } 
      }
    
    }
  
    /* update old counter */
    old_counter = counter;
  }
  else
  {
    /* nothing?? */
  }
 
}




while (counter == 2)
{
  counter = button_in;
  difference = counter - old_counter;
  Serial.println(counter);
  Serial.println(old_counter);
  delay(2000);
  if (difference < 0 & counter > 1)
  {
    /* Turn LED ON */
    for( int i = 0; i < numPixels; i++ ){
      strip.setPixelColor(i, r, g, b);
      delay(10);
    }


  
    /* Check Hall Sensor + Keep in Loop*/
    flag = 1;


    while (flag == 1)
    {
    


      if (duty_cycle*100 < 45.0) {
        for( int i = 0; i < numPixels; i++ ){
          strip.setPixelColor(i, 0, 0, 0);
          strip.show();
          strip.clear();
          delay(10);
        }
        flag = 0;


        random_num = random(1,3);


        if (random_num == 1)
        {
          button_out = counter-1;
          BReadings.button_send = button_out;
          esp_err_t result = esp_now_send(broadcastAddress_2, (uint8_t *)&BReadings, sizeof(BReadings));
        }
      
        else if (random_num == 2)
        {
          button_out = counter-1;
          BReadings.button_send = button_out;
          esp_err_t result = esp_now_send(broadcastAddress_3, (uint8_t *)&BReadings, sizeof(BReadings));
        }
      }


      else if (duty_cycle*100 > 55.0) {


        for( int i = 0; i < numPixels; i++ ){


          strip.setPixelColor(i, 0, 0, 0);
          strip.show();
          strip.clear();
          delay(10);
        }
        flag = 0;


        random_num = random(1,3);


        if (random_num == 1)
        {
          button_out = counter-1;
          BReadings.button_send = button_out;
          esp_err_t result = esp_now_send(broadcastAddress_2, (uint8_t *)&BReadings, sizeof(BReadings));
        }
      
        else if (random_num == 2)
        {
          button_out = counter-1;
          BReadings.button_send = button_out;
          esp_err_t result = esp_now_send(broadcastAddress_3, (uint8_t *)&BReadings, sizeof(BReadings));
        }
              
      }


      else {
        for( int i = 0; i < numPixels; i++ ){
          strip.setPixelColor(i, r, g, b);
          strip.show();
          delay(10);
        } 
      }
    
    }
  
    /* update old counter */
    old_counter = counter;
  }
  else
  {
    /* nothing?? */
  }
 
}


while (counter == 1)
{
   counter = button_in;
  difference = counter - old_counter;
  Serial.println(counter);
  Serial.println(old_counter);
  delay(2000);
  if (difference < 0)
  {
    /* Turn LED ON */
    for( int i = 0; i < numPixels; i++ ){
      strip.setPixelColor(i, r, g, b);
      delay(10);
    }


  
    /* Check Hall Sensor + Keep in Loop*/
    flag = 1;


    while (flag == 1)
    {
    
      if (duty_cycle*100 < 45.0) {
        for( int i = 0; i < numPixels; i++ ){
          strip.setPixelColor(i, 0, 0, 0);
          strip.show();
          strip.clear();
          delay(10);
        }
        flag = 0;
      
        button_out = counter-1;
        BReadings.button_send = button_out;
        esp_err_t result = esp_now_send(broadcastAddress_1, (uint8_t *)&BReadings, sizeof(BReadings));
        counter = 0;
      }


      else if (duty_cycle*100 > 55.0) {


        for( int i = 0; i < numPixels; i++ ){


          strip.setPixelColor(i, 0, 0, 0);
          strip.show();
          strip.clear();
          delay(10);
        }
        flag = 0;


        button_out = counter-1;
        BReadings.button_send = button_out;
        esp_err_t result = esp_now_send(broadcastAddress_1, (uint8_t *)&BReadings, sizeof(BReadings));
        counter = 0;
              
      }


      else {
        for( int i = 0; i < numPixels; i++ ){
          strip.setPixelColor(i, r, g, b);
          strip.show();
          delay(10);
        } 
      }
    
    }
  
    /* update old counter */
    old_counter = 11;
    counter = -1;
    button_in = 0;
    button_out = -1;
    BReadings.button_send = button_out;
    esp_err_t result1 = esp_now_send(broadcastAddress_2, (uint8_t *)&BReadings, sizeof(BReadings));    
    esp_err_t result2 = esp_now_send(broadcastAddress_3, (uint8_t *)&BReadings, sizeof(BReadings));
    button_out = 0;
    difference = 0;
  
  }
  else
  {
    /* nothing?? */
  }
 
}


}
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4.6.2 Current Consumption in Other Modes

Table 4-8. Current Consumption in Modem-sleep Mode

Typ
CPU Fi
Mode (::zt;ency Description All Peripherals Clocks ~ All Peripherals Clocks
Disabled (mA) Enabled (mA)!
CPU is running 23 28
160 —
53 CPU is idle 16 21
Modem-sleep= - -
80 CPU is running 17 22
CPU is idle 13 18

1 In practice, the current consumption might be different depending on which peripherals are enabled.

2|n Modem-sleep mode, Wi-Fi is clock gated.

3 In Modem-sleep mode, the consumption might be higher when accessing flash. For a flash rated at
80 Mbit/s, in SPI 2-line mode the consumption is 10 mA.
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